Zusammenfassung: Neurobiologische und evolutionäre Grundlagen der Schädigung von Eltern und Kindern durch das absichtliche und ungerechtfertigte Abschneiden von Eltern-Kind-Bindungen (AUA-EB)

Jorge Guerra González Juni 2025

[Neurobiological and evolutionary foundations of harm to parents and children through the intentional and unjustified severing of parent-child bonds]

Jorge Guerra González June 2025

Dr. Jorge Guerra González

Nr. 4 De

**Schriftenreihe/ Publication series** 

Die soziale Dimension der Nachhaltigkeit ISSN 2944-8972/

The social dimension of sustainability ISSN 2944-8972

Neurobiologische und evolutionäre Grundlagen der Schädigung von Eltern und Kindern durch das absichtliche und ungerechtfertigte Abschneiden von Eltern-Kind-Bindungen (AUA-EB)

Jorge Guerra González Juni 2025

#### **Zusammenfassung:**

[Der Aufsatz untersucht neurobiologische und evolutionäre Grundlagen der Schädigung von Eltern und Kindern durch das absichtliche und ungerechtfertigte Abschneiden von Eltern-Kind-Bindungen (AUA-EB). Das Zurückweisen eines Elternteils durch ein Kind – meist infolge von Manipulation durch den anderen Elternteil – kann gravierende Auswirkungen auf die kindliche Entwicklung haben. Es wird argumentiert, dass AUA-EB keine bloße soziale Konstruktion, sondern eine wissenschaftlich belegbare Störung grundlegender Bindungsmechanismen ist. Der Beitrag beschreibt neurobiologische Veränderungen bei Müttern und Vätern, die die biologische Verankerung elterlicher Fürsorge belegen. Aus evolutionsbiologischer, entwicklungspsychologischer und neurowissenschaftlicher Perspektive wird dargelegt, dass stabile Bindungen zu beiden Elternteilen für die gesunde Entwicklung von Kindern essentiell sind. AUA-EB wird als unnatürlicher Eingriff in das Bindungssystem begriffen, der sowohl Kindern als auch entfremdeten Eltern messbaren Schaden zufügt. Abschließend wird ein multidisziplinärer Ansatz empfohlen, um die Gefahr, die von von AUA-EB ausgeht, anzuerkennen und die entsprechend zu adressieren.]

Schlüsselwörter: [Neurobiologische Anpassung bei Eltern, Eltern-Kind-Entfremdung, Auswirkung von Bindungsstörungen, Kindeswohl]

#### Summary:

[The article examines the neurobiological and evolutionary foundations of the harm caused to parents and children by the intentional and unjustified severing of parent-child bonds (AUA-EB). A child's rejection of one parent—often as a result of manipulation by the other parent—can have serious consequences for the child's development. It is argued that AUA-EB is not merely a social construct, but a scientifically demonstrable disruption of fundamental attachment mechanisms. The article describes neurobiological changes in mothers and fathers that underscore the biological basis of parental caregiving. From an evolutionary, developmental psychological, and neuroscientific perspective, it is shown that stable bonds with both parents are essential for healthy child development. AUA-EB is understood as an unnatural disruption of the attachment system, causing measurable harm to both children and alienated parents. Finally, the article advocates for a multidisciplinary approach to acknowledge and appropriately address the threat posed by AUA-EB.]

Key Words: [Neurobiological adaptation in parents, parent-child alienation, impact of attachment disorders, child's well-being]

#### VidPR:

Dr. Jorge Guerra González, Salzstr. 1, 21335 Lüneburg

#### Korrespondenz:

Dr. Jorge Guerra González, Salzstr. 1, 21335 Lüneburg, kontakt@jorgeguerra.de

### 1. Abstract

Das absichtliche und ungerechtfertigte Abschneiden von Eltern-Kind-Bindungen (AUA-EB) bezeichnet ein Phänomen, bei dem ein Kind – oft im Kontext hochstrittiger Sorgerechtsstreitigkeiten – einen Elternteil ohne legitime Begründung zurückweist, typischerweise aufgrund von Manipulation oder Druck durch den anderen Elternteil. Obwohl das Konzept in einigen juristischen und klinischen Kreisen umstritten ist, legt dieser Artikel dar, dass AUA-EB nicht bloß ein soziales Konstrukt, sondern eine wissenschaftlich fundierte Störung grundlegender menschlicher Bindungsmechanismen ist. Unter Rückgriff auf Erkenntnisse der Evolutionstheorie, Entwicklungspsychologie und Neurowissenschaft erläutert der Beitrag, warum Kinder biologisch darauf eingestellt sind, dauerhafte emotionale Bindungen zu **beiden** Elternteilen zu formen und warum diese Bindungen für eine gesunde Entwicklung unerlässlich sind.

Der Artikel betont die Altrizialität des Menschen – unsere einzigartige Verletzbarkeit bei der Geburt – und das daraus resultierende evolutionäre Bedürfnis nach kooperativer, biparentaler Fürsorge. Vor diesem Hintergrund wird verständlich, warum Kinder in hohem Maße auf sichere Bindungen für ihre psychologische und neurologische Entwicklung angewiesen sind. Anschließend werden die neurobiologischen Veränderungen bei Müttern und Vätern während des Übergangs zur Elternschaft untersucht, einschließlich struktureller Veränderungen im Gehirn, hormoneller Anpassungen und einer gesteigerten Reaktionsbereitschaft auf Signale des Säuglings. Diese Anpassungen untermauern die Sichtweise, dass Eltern–Kind-Bindungen biologisch verankert und sich gegenseitig verstärkend sind.

Die Übersicht präsentiert Belege dafür, dass das AUA-EB einen unnatürlichen Bruch in diesem Bindungssystem darstellt, der messbaren psychologischen und möglicherweise neuroentwicklungsbezogenen Schaden beim Kind zur Folge hat. Sie wirkt sich auch auf die entfremdeten Eltern aus, deren Gehirn und Körper zwar auf Fürsorge vorbereitet sind, denen die Ausübung dieser Rolle jedoch verwehrt bleibt – was zu Symptomen führt, die einer Trauerreaktion ähneln. Der Artikel unterstreicht, dass es wissenschaftlich nicht haltbar ist, die Realität des AUA-EB zu leugnen: Die Unterbrechung der Bindung eines Kindes an einen liebevollen Elternteil ist schädlich, und die biologische Grundlage des Elternseins bekräftigt das Recht des Kindes auf beide Elternteile.

Abschließend plädiert der Artikel für einen multidisziplinären Ansatz, der Neurowissenschaft, evolutionäre Psychologie und Familienrecht vereint, um das AUA-EB als ernsthafte Bedrohung für die kindliche Entwicklung und für Gerechtigkeit in familiären Beziehungen anzuerkennen und entsprechend zu adressieren.

# 2. Inhaltsverzeichnis

| 1. Abstract                                                                                           | 3           |
|-------------------------------------------------------------------------------------------------------|-------------|
| 2. Inhaltsverzeichnis                                                                                 | 4           |
| 3. Einleitung                                                                                         | 5           |
| thoden6                                                                                               | verzeichnis |
| 5. Ergebnisse                                                                                         | 6           |
| 5.1 Evolutionsbedingte Verwundbarkeit menschlicher Nachkommen und Notwendigkeit biparentaler Fürsorge | 6           |
| 5.2 Neurobiologische Anpassungen bei Müttern: Das mütterliche Gehirn                                  | 9           |
| 5.3 Neurobiologische Anpassungen bei Vätern: Das väterliche Gehirn                                    | 11          |
| 5.4 Auswirkungen der Bindungsunterbrechung durch das AUA-EB                                           | 14          |
| 6. Diskussion                                                                                         | 16          |
| 7. Schlussfolgerung                                                                                   | 18          |

## 3. Einleitung

Das absichtliche und ungerechtfertigte Abschneiden von Eltern-Kind-Bindungen (AUA-EB), üblicherweise als **elterliche Entfremdung** bezeichnet und international als *Parental Alienation (PA)* bekannt, ist ein Phänomen, bei dem die Bindung eines Kindes zu mindestens einem Elternteil systematisch untergraben oder getrennt wird – in der Regel durch den anderen Elternteil. Dieses Problem tritt häufig in hochkonflikthaften Sorgerechtsstreitigkeiten auf und hat Kontroversen hinsichtlich seiner Legitimität und Auswirkungen ausgelöst. In der Folge beginnt das Kind, den betroffenen Elternteil ohne gerechtfertigten Grund abzulehnen. Diese Ablehnung wird oft zum rechtlichen Maßstab, wenn ein Familiengericht sie als den angeblich freien Willen des Kindes akzeptiert.

Trotz dieser Debatten deutet eine wachsende Zahl von Belegen darauf hin, dass das AUA-EB ein reales und schädliches Phänomen ist – sowohl für Eltern als auch für Kinder und sehr wahrscheinlich auch für andere nahe Bezugspersonen oder Familienmitglieder.

Die zentrale Frage ist daher, ob ein gemeinsamer Erklärungsrahmen den Schaden erklären kann, den sowohl Eltern als auch ihre Kinder erfahren. Dieser Beitrag stellt die Hypothese auf, dass eine solche Erklärung existiert und in grundlegenden Aspekten der menschlichen Biologie und evolutionären Entwicklung zu finden ist.

Vielleicht nicht überraschend zwingt die Einnahme dieser Perspektive auch zu einer breiter gefassten Reflexion über das menschliche Selbstverständnis. Ein Fokus auf die menschliche Existenz an sich kann tiefere Einblicke in unsere Natur bieten – in die strukturellen Elemente, die unser Wesen, unsere Kultur und unsere Partnerwahl ausmachen – sowie in die Gründe, weshalb bestimmte äußere Eingriffe, so kognitiv oder normativ gerechtfertigt sie auch sein mögen, dennoch mit fundamentalen Aspekten des Menschseins in Konflikt geraten können.

Menschen sind eine **altriziale** Spezies – unser Nachwuchs kommt extrem unterentwickelt und hilflos zur Welt –, was Kinder einzigartig verwundbar macht und vollständig von erwachsenen Bezugspersonen abhängig werden lässt, um zu überleben und sich gesund zu entwickeln. Die Evolutionstheorie und die Bindungsforschung legen nahe, dass Kinder ein angeborenes Bedürfnis haben, als Überlebensvoraussetzung stabile emotionale Bindungen zu ihren Bezugspersonen aufzubauen. Eine Störung dieser Bindungen durch das AUA-EB kann folglich tiefgreifenden entwicklungspsychologischen Schaden anrichten.

Dieser Artikel untersucht die neurobiologischen und evolutionären Grundlagen des AUA-EB. Wir haben Forschungsergebnisse aus der Evolutionsbiologie, Entwicklungspsychologie und Sozialneurowissenschaft integriert, um zu erklären, warum das Wohlbefinden menschlicher Kinder untrennbar mit sicheren Beziehungen zu beiden Elternteilen verbunden ist und wie sich die Gehirne und Körper von Müttern und Vätern biologisch an die Elternschaft anpassen. Wir stellen Evidenz vor, dass menschliche Säuglinge sich aufgrund ihrer extremen Schutzbedürftigkeit (Altrizialität) so entwickelt haben, dass sie biparentale (und alloparentale) Fürsorge benötigen, und dass sowohl Mütter als auch Väter bedeutende neurobiologische Veränderungen – in der Hirnstruktur, -funktion und im Hormonhaushalt – durchmachen, wenn sie zu Eltern werden. Diese Anpassungen unterstützen die Eltern-Kind-Bindung und Fürsorgeverhalten und zeigen, dass die Aufrechterhaltung der Bindung zum Kind eine biologisch verankerte Priorität ist. Aus dieser interdisziplinären Perspektive möchten wir verdeutlichen, dass elterliche Entfremdung/das AUA-EB grundlegenden evolutionären Imperativen und neurobiologischen Prozessen zuwiderläuft. Damit heben wir hervor, dass sie tatsächlich existiert und welch gravierende Auswirkungen sie auf Kinder und Familien hat.

## 4. Methoden

Wir führten einen integrativen Literaturüberblick durch, gestützt auf peer-reviewte Studien und Übersichtsarbeiten aus der evolutionären Anthropologie, der Entwicklungspsychologie und der Neurowissenschaft, um die Eltern-Kind-Bindung aus verschiedenen Blickwinkeln zu beleuchten. Die Quellen identifizierten wir über akademische Datenbanken (z. B. PubMed, Web of Science) sowie durch Auswertung wichtiger Referenzlisten. Der Schwerpunkt lag auf (a) dem evolutionären Kontext menschlicher Elternschaft (mit Fokus auf der Abhängigkeit des Nachwuchses und der Rolle biparentaler Fürsorge), (b) neurobiologischen Anpassungen bei Müttern während Schwangerschaft und Postpartum-Phase, (c) neurobiologischen Anpassungen bei Vätern während des Übergangs zur Vaterschaft und (d) bekannten Konsequenzen gestörter Eltern-Kind-Bindungen. Wir berücksichtigten human-neurowissenschaftliche Studien (MRT- und fMRT-Studien) zu Veränderungen im Elterngehirn, Hormonuntersuchungen bei Müttern und Vätern sowie relevante tierexperimentelle Forschung oder interspezifische Vergleiche für den evolutionären Kontext. Da die elterliche Entfremdung/das AUA-EB selbst ein soziales Phänomen ist, das sich schwer experimentell untersuchen lässt, analysierten wir keine originären klinischen Studiendaten; stattdessen synthetisierten wir bestehendes wissenschaftliches Wissen, um einen theoretischen Rahmen zu entwickeln, der Evolution, Neurobiologie und das AUA-EB-Konzept verknüpft.

Unsere Methode folgte einem narrativen, interdisziplinären Review-Ansatz. Wir priorisierten neuere Erkenntnisse (vor allem aus den Jahren 2010–2024), um den aktuellen Stand der Wissenschaft abzubilden, sowie "klassische" Grundlagenstudien der Bindungstheorie und Evolutionsforschung. Sämtliche einbezogenen Quellen sind seriöse wissenschaftliche Publikationen wie peer-reviewte Zeitschriftenartikel, Bücher von akademischen Verlagen oder maßgebliche Übersichtsarbeiten. Die Evidenz wird im Abschnitt *Ergebnisse* strukturiert aufbereitet, entsprechend einer Analyse auf mehreren Ebenen: von breiten evolutionären Prinzipien bis hin zu spezifischen neuronalen und hormonellen Mechanismen bei Eltern. Anschließend diskutieren wir, wie diese Erkenntnisse zusammengenommen unser Verständnis des AUA-EB erweitern.

# 5. Ergebnisse

# 5.1 Evolutionsbedingte Verwundbarkeit menschlicher Nachkommen und Notwendigkeit biparentaler Fürsorge

Die menschliche Kindheit ist durch eine extrem lange Phase der Hilflosigkeit gekennzeichnet. Menschenbabys werden weitaus unreifer geboren (altrizial) als die Jungtiere anderer Primaten – so entspricht das Gehirn eines neugeborenen Menschen nur etwa 25 % des Erwachsenenvolumens, während viele andere Säugetiere mit einem deutlich höheren Anteil geboren werden. Man nimmt an, dass diese Altrizialität durch eine Kombination von Faktoren entstanden ist, wie etwa die biomechanischen Beschränkungen des aufrechten Gangs auf die Beckenweite (das sogenannte "geburtshilfliche Dilemma") und die Vorteile, einen Teil der Gehirnentwicklung in die Zeit nach der Geburt zu verlagern, wodurch größere Plastizität ermöglicht wird. Der evolutionäre Kompromiss ist allerdings, dass menschliche Säuglinge nach der Geburt eine verlängerte, intensive Pflege benötigen, um zu überleben und eine normale Hirnentwicklung zu durchlaufen. Anders als Nestflüchter, die sich früh selbst versorgen können, ist ein menschliches Kind über Jahre hinweg auf Betreuer angewiesen – nicht nur für Nahrung

und Schutz, sondern auch für soziale und kognitive Anregung während einer langen Kindheitsphase.

Entscheidend ist, dass Kinderbetreuung in unserer urzeitlichen Umgebung wahrscheinlich eine kooperative Aufgabe war. Während mütterliche Fürsorge bei Säugetieren nahezu universell ist (100 % der Säugetierarten verlassen sich für die frühe Versorgung auf die Mutter), ist echte biparentale Fürsorge – bei der Väter direkt zur Aufzucht der Nachkommen beitragen – äußerst selten und wird schätzungsweise nur bei 3-5 % der Säugetierarten praktiziert. Menschen gehören zu dieser Minderheit biparentaler Säuger, ebenso wie einige monogame Nagetiere und Vogelarten. Evolutionsbiologische Analysen zeigen, dass sich väterliche Fürsorge vor allem dann entwickelt, wenn sie die Überlebenschancen der Nachkommen signifikant verbessert und wenn eine hohe Sicherheit der Vaterschaft gegeben ist. In der menschlichen Stammeslinie haben die Kombination aus hilflosen Säuglingen und der Nutzen zusätzlicher Versorgung und Schutz wohl einen starken Selektionsdruck erzeugt, der Väter (und andere Verwandte bzw. Alloparenten) dazu bewogen hat, bei der Kinderbetreuung mitzuhelfen. Mit anderen Worten: Menschliche Babys haben sich so entwickelt, dass sie Investitionen von mehr als nur einer Betreuungsperson erwarten. Anthropologische Hypothesen wie das Modell der "kooperativen Aufzucht" oder "Alloparentalen Fürsorge" gehen davon aus, dass nicht nur Väter, sondern auch andere Verwandte (z.B. Großmütter) eine Schlüsselrolle in der Kinderbetreuung unserer Spezies kooperative Elternschaft verschaffte menschlichen Kindern einen Überlebensvorteil, da mehrere Betreuer das Kind mit Nahrung versorgen, Fähigkeiten lehren und schützen konnten – insbesondere angesichts der langen Jugendphase.

Es gibt überzeugende Hinweise darauf, dass dieser einzigartig menschliche Weg der verlängerten postnatalen Entwicklung – und die entsprechende Spezialisierung, die das Verhalten des Menschen prägt – eng mit drei artspezifischen Merkmalen verknüpft ist: (1) beschleunigtes Gehirnwachstum, (2) die Evolution des aufrechten Gangs und (3) die außergewöhnliche Komplexität der menschlichen Geburt, die selbst eine Folge des großen Gehirnwachstums ist und zunehmend durch generationenübergreifende Unterstützung bewältigt wurde.

Als Säugetiere kommen Menschen in einem Entwicklungsstadium zur Welt, das einerseits weit genug fortgeschritten ist, um eine Lebensfähigkeit außerhalb des Mutterleibs sicherzustellen (wenn auch unter intensiver postnataler Betreuung), andererseits aber früh genug, um die lebensbedrohlichen Risiken der Geburt für die Mutter (und das Kind selbst) zu verringern.

Im evolutionären Sinne scheint die Natur auf dieses Dilemma reagiert zu haben, indem sie einen Teil der Tragzeit nach außen verlagerte – sie verlängerte gewissermaßen die "Schwangerschaft" über die Geburt hinaus – und ermöglichte so das Überleben sowohl des Säuglings als auch der Mutter.

Abbildung 1: (Nach Feldman et al. 2019) Evolutionärer Kontext elterlicher Fürsorge bei Säugetieren. Mütter leisten bei nahezu 100 % der Säugetierarten direkte Fürsorge, wohingegen Väter nur bei etwa 3–5 % der Arten (primär sozial monogame Spezies) aktiv an der Jungenaufzucht beteiligt sind. Menschen zählen zu dieser seltenen biparentalen Kategorie. Alloparenten (nicht-biologische Betreuungspersonen wie Großeltern oder ältere Geschwister) beteiligen sich ebenfalls nur bei einer Minderheit der Arten an der Fürsorge. In der Evolutionsgeschichte unserer Spezies verbesserte die kooperative Betreuung durch Mütter, Väter und weitere Helfer das Überleben und die Entwicklungschancen des Nachwuchses. Dieser Hintergrund verdeutlicht, dass menschliche Kinder evolutionär darauf ausgerichtet sind, Betreuung von beiden Eltern zu erhalten.

Aus Sicht des Kindes ist eine starke emotionale Bindung an Betreuungspersonen kein Luxus, sondern eine biologische Notwendigkeit. Die Bindungstheorie, zunächst von John Bowlby formuliert, besagt, dass Säuglinge mit angeborenen Bindungsverhaltensweisen (Weinen, Festklammern, Lächeln) zur Welt kommen, die sich entwickelt haben, um Betreuungspersonen in der Nähe zu halten und so Sicherheit und Versorgung zu gewährleisten. Die moderne psychologische Forschung bestätigt, dass ein warmes, responsives Betreuungsumfeld entscheidend für die gesunde Entwicklung eines Kindes ist. So zeigen Langzeitstudien an Kindern, die in extremer Vernachlässigung aufwuchsen (etwa in rumänischen Waisenhäusern), schwere und langanhaltende Defizite in der Hirnentwicklung, der Emotionsregulation und der sozialen Funktionsfähigkeit, wenn Kleinkinder nicht beständig liebevolle Fürsorge erhalten. Frühe psychosoziale Deprivation beeinträchtigt im wahrsten Sinne die normale Entwicklung des menschlichen Gehirns und der psychischen Gesundheit. Umgekehrt entwickeln Kinder, die mit sicheren Bindungen zu ihren Bezugspersonen aufwachsen, im Allgemeinen eine bessere Stressregulation, Empathie und kognitive Fähigkeiten. Diese Befunde stehen im Einklang mit der evolutionsbiologischen Logik, dass das Gehirn von Kindern Fürsorge als nötigen Input für eine normale Entwicklung erwartet.

Bemerkenswert ist, dass das Bedürfnis des Kindes nach Bindung sich auch darauf erstreckt, seine Bezugspersonen und biologischen Ursprünge zu kennen. Selbst wenn die grundlegenden physischen Bedürfnisse erfüllt sind, suchen Kinder oft nach Wissen über und Verbindung zu ihren leiblichen Eltern. Zum Beispiel zeigen Studien an Erwachsenen, die von einem Elternteil getrennt wurden oder adoptiert sind, einen intrinsischen Drang, ihre biologische Familie ausfindig zu machen. Dieses "Bedürfnis dazuzugehören" ist so fundamental, dass es als zentrales motivationales Konstrukt in der Sozialpsychologie betrachtet wird. Menschen sind eine ultrasoziale Spezies - der "zoon politikon" -, bei der das Eingehen dauerhafter zwischenmenschlicher Bindungen in unserer Biologie verankert ist. Neurochemische Systeme im Gehirn wie Oxytocin und Vasopressin bilden die Basis für soziale Bindung und Zugehörigkeit. Insbesondere Oxytocin wird häufig als "Bindungshormon" bezeichnet: Es wird bei intimen sozialen Interaktionen ausgeschüttet (etwa beim Umarmen oder Stillen) und stärkt Vertrauen und Verbundenheit. Genetische Studien deuten sogar darauf hin, dass Varianten in den Oxytocin/Vasopressin-Systemen die Neigung zu sozialen Bindungen beeinflussen können. Kurz gesagt: Kinder sind biologisch darauf programmiert, sich an ihre Betreuungspersonen zu binden, und diese Bindungen erfüllen einen adaptiven Zweck - sie halten das Kind sicher, helfen ihm soziale Fähigkeiten zu erlernen und schließlich als unabhängiger Erwachsener zu gedeihen.

Aus evolutionärer Sicht stellt die elterliche Entfremdung / AUA-EB einen krassen Widerspruch zu diesem natürlichen System dar. Das AUA-EB beinhaltet die bewusste Erosion der Bindung eines Kindes zu einem Elternteil (meist einem zuvor geliebten Elternteil), häufig durch Manipulation oder anhaltende negative Darstellung. Das ist gewissermaßen das Gegenteil dessen, was die Evolution optimiert hat: Anstatt mehrere unterstützende Bindungen aufrechtzuerhalten, wird das Kind unter Druck gesetzt, eine davon aufzugeben. Angesichts unserer Artgeschichte kann der Verlust eines Elternteils (oder dazu gebracht zu werden, einen Elternteil für "schlecht" zu halten und zu meiden) als evolutionär unnormaler Stressor betrachtet werden. Während des größten Teils der Menschheitsgeschichte wäre Verwaisen oder der Verlust eines Elternteils ein drastisches, meist traumatisches Ereignis gewesen, das das Überleben des Kindes gefährdete. Das AUA-EB schafft ein Szenario, das diesem Trauma analog ist, auch wenn der betroffene Elternteil noch lebt und gewillt ist - es ist ein künstliches psychologisches Verwaisen. Man kann erwarten, dass eine solche Situation das Kind in intensiven emotionalen Konflikt und Stress versetzt, sein Sicherheitsgefühl untergräbt und die normale Entwicklung von Vertrauen und sozialer Kognition entgleisen lassen könnte. Die Beeinträchtigung des kindlichen Bedürfnisses nach einer stabilen Bindung zu beiden Elternteilen

dürfte messbar negative Folgen haben – eine Hypothese, die durch Studien gestützt wird, die Bindungsstörungen mit Psychopathologie in Verbindung bringen.

Zusammengefasst hat die extreme Verletzlichkeit menschlicher Kinder und ihre lange Entwicklungsperiode zu einem evolutionären Imperativ für sichere, hochwertige Fürsorge durch mehrere Erwachsene geführt. Das Bindungssystem eines Kindes ist biologisch darauf ausgerichtet, bei Mutter **und** Vater (sowie anderen verlässlichen Betreuungspersonen) Trost und Stabilität zu suchen. Das AUA-EB, die dem Kind eine dieser lebenswichtigen Bindungen entzieht, läuft diesem adaptiven System zuwider. Die Evolutionstheorie sagt daher voraus, dass das AUA-EB schädlich wäre: Sie beraubt das Kind elterlicher Investitionsressourcen und verletzt die angeborenen Erwartungen des Kindes an soziale Zugehörigkeit. In den folgenden Abschnitten untersuchen wir, wie sich die Gehirne und Körper von Müttern und Vätern verändern, um die Bindung zwischen Eltern und Kind zu unterstützen – und unterstreichen damit, wie tief die Natur die Eltern-Kind-Bindung in unserer Neurobiologie verankert hat.

# 5.2 Neurobiologische Anpassungen bei Müttern: Das mütterliche Gehirn

Mutter zu werden löst dramatische Veränderungen in der Neurobiologie einer Frau aus. Schwangerschaft und Postpartum-Phase bringen eine Kaskade hormoneller, neuronaler und verhaltensbezogener Transformationen mit sich, die die Mutter darauf vorbereiten, für ihr Neugeborenes zu sorgen. Während der Schwangerschaft verändert sich das endokrine System grundlegend: Die Spiegel von Östrogen (E) und Progesteron (P), die von den Eierstöcken und der Plazenta produziert werden, steigen insbesondere im Spätstadium der Schwangerschaft auf außergewöhnlich hohe Werte an. Diese Hormonschübe fördern neuronale Plastizität in Vorbereitung auf die Geburt. Unmittelbar nach der Entbindung erfolgt ein ebenso drastischer hormoneller Umbruch – Progesteron- und Östrogenspiegel stürzen ab, während Hormone wie Oxytocin (OT) und Prolaktin (PRL) während Wehen, Geburt und Stillzeit sprunghaft ansteigen. Das aus der Hypophyse ausgeschüttete Oxytocin erleichtert die Uteruskontraktionen und den Milcheinschuss, wirkt aber auch im Gehirn, um mütterliches Bindungsverhalten zu fördern. Prolaktin, das als Reaktion auf das Saugen des Säuglings freigesetzt wird, induziert die Milchproduktion und wird mit der Förderung von Fürsorge- und Beschützerinstinkten in Verbindung gebracht. Im Wesentlichen wird der Körper einer Mutter biochemisch darauf vorbereitet, rund um die Geburt in den "Elternmodus" zu schalten.

Begleitet werden diese chemischen Veränderungen von bemerkenswerten strukturellen Gehirnanpassungen. Bahnbrechende neuroimaging-Studien haben gezeigt, dass Erstgebärende von vor der Schwangerschaft bis nach der Geburt eine Abnahme des **Grauen Substanzvolumens** in spezifischen Gehirnregionen durchmachen. Auch wenn ein Verlust an Hirnvolumen beunruhigend klingen mag, interpretieren die Forscher dies als Prozess des **synaptischen Prunings** oder "Feintunings", der die Effizienz der neuronalen Schaltkreise steigert, die für die Mutterschaft am relevantesten sind. In einer longitudinalen MRT-Studie fanden Hoekzema et al. (2017) hochgradig konsistente Abnahmen des grauen Volumens in Arealen, die an sozialer Kognition beteiligt sind (wie dem medialen Frontal- und Temporalkortex, welche soziale Signale und Theory of Mind verarbeiten), bei Frauen nach ihrer ersten Schwangerschaft. Diese Veränderungen waren so deutlich, dass ein Algorithmus anhand des MRT-Scans unterscheiden konnte, ob eine Frau schon einmal schwanger war oder nicht. Wichtig ist, dass das Ausmaß der Volumenabnahme mit dem mütterlichen Verhalten korreliert: Mütter mit stärkerem Volumenrückgang berichteten tendenziell von einer intensiveren Bindung und Einstimmung auf ihre Säuglinge. Anders gesagt: "Weniger kann mehr sein" – das Gehirn in

der Zeit nach der Geburt kappt möglicherweise überflüssige Verbindungen, um die Responsivität der Mutter gegenüber ihrem Baby zu schärfen. In einer Studie wurde sogar festgestellt, dass ein kleineres Hippocampus-Volumen in der frühen Postpartum-Phase mit positiverem Mutter-Kind-Fürsorgeverhalten einherging, was die Idee stützt, dass gezielter neuronaler Rückbau adaptiv ist. Diese strukturellen Veränderungen im mütterlichen Gehirn können langanhaltend sein: Follow-up-Untersuchungen zeigen, dass Aspekte der schwangerschaftsbedingten Umstrukturierung mindestens zwei Jahre nach der Geburt fortbestehen und möglicherweise länger – was auf eine dauerhafte Neuorganisation des mütterlichen Gehirns hindeutet.

Funktionell zeigen frischgebackene Mütter verstärkte Gehirnantworten auf Säuglingsreize. Die Erfahrung der Mutterschaft scheint das Gehirn in einer Weise zu aktivieren, die einfühlsame Fürsorge begünstigt. In funktionellen MRT-Studien etwa weisen Frauen nach der Geburt stärkere Aktivierungen in visuellen und emotionalen Verarbeitungsarealen auf, wenn sie das Gesicht ihres Babys sehen oder Babygeschrei hören, verglichen mit Frauen, die nie geboren haben. In einem Experiment zeigten Forscher emotionalen Gesichtsausdruck von Säuglingen (freudig, traurig, neutral) 20 Neu-Müttern und 22 nulliparen (nie schwangeren) Frauen. Die Neu-Mütter hatten eine signifikant höhere Aktivierung in Gehirnregionen, die an der Gesichtererkennung (z. B. Gyrus fusiformis) sowie an Empathie- und Mentalisierungsnetzwerken beteiligt sind, wenn sie Säuglingsgesichter sahen - im Vergleich zur Kontrollgruppe. Darüber hinaus korrelierte das Ausmaß der Aktivierung in bestimmten Regionen (etwa dem linken fusiformen und dem parahippocampalen Gyrus) mit der selbstberichteten empathischen Anteilnahme der Mütter, was darauf hinweist, dass die Gehirnveränderungen mit der sozial-emotionalen Einstimmung verknüpft sind. Andere Studien mit akustischen Reizen haben gezeigt, dass das auditorische Cortex und das limbische System von Müttern auf das Schreien des eigenen Babys besonders stark und oft innerhalb von Millisekunden reagieren - ein Beleg dafür, wie sehr das Gehirn darauf vorbereitet ist, Säuglingssignale zu erkennen und darauf zu reagieren. Wahrscheinlich spielt auch Oxytocin bei diesen funktionellen Veränderungen eine Rolle - in Tiermodellen erhöht im Gehirn wirkendes Oxytocin in sensorischen Arealen die Auffälligkeit von Jungtier-Signalen für die Mutter (während dieselben Signale von jungfräulichen Weibchen ignoriert werden könnten). Beim Menschen hat man gezeigt, dass intranasal verabreichtes Oxytocin die Aktivität in den Hirnkreisen von Müttern moduliert, die mit Fürsorge und Belohnung verknüpft sind, auch wenn die genauen Mechanismen noch aktiv erforscht werden.

Zusammengefasst macht das mütterliche Gehirn eine koordinierte Transformation durch hormonell, strukturell und funktionell. Diese Anpassungen drängen eine frischgebackene Mutter insgesamt zu Verhaltensweisen, die das Überleben ihres Säuglings sichern: Versorgung, Schutz und intuitives Verständnis für die Bedürfnisse des Babys. Aus evolutionärer Perspektive sind dies genau die Veränderungen, die nötig sind, um sicherzustellen, dass ein hilfloser Säugling versorgt wird. Die Mutter wird biologisch motiviert, das Baby zu priorisieren - ihre Stressregulation passt sich an, um empfindlicher auf das Kind zu reagieren, ihre Belohnungsschaltkreise sprechen vielleicht auf Babys lächeln an und ihr Gedächtnis verbessert sich womöglich für babybezogene Informationen (einige Studien legen nahe, dass Mütter besser darin werden, Säuglingsreize zu erkennen und zu behalten). Wichtig ist, dass diese Veränderungen auch potenzielle Verwundbarkeiten mit sich bringen: Die Postpartum-Zeit birgt ein erhöhtes Risiko für affektive Störungen (z. B. postpartale Depression), möglicherweise weil dieselbe Plastizität, die Anpassung erlaubt, unter ungünstigen Bedingungen (wie fehlender Unterstützung oder extremem Stress) zu Dysregulation führen kann. In einem normalen unterstützenden Umfeld jedoch kommen die neurobiologischen Veränderungen der Mutter-Kind-Bindung enorm zugute. Man weiß, dass eine gut verbundene, feinfühlige Mutter-Kind-Dyade das Kind gegen Stress puffert und optimale Entwicklung fördert.

Im Kontext des AUA-EB macht das Verständnis des mütterlichen Gehirns deutlich, wie widernatürlich und schädlich es ist, die Mutter-Kind-Bindung zu durchtrennen. Das Gehirn und der Körper einer Mutter sind buchstäblich neu verdrahtet worden, um sich mit ihrem Kind zu verbinden. Wenn in einem Entfremdungsszenario einem Kind die Mutter entzogen wird (zum Beispiel, wenn ein Vater das Kind von der Mutter entfremdet), kann die Mutter einen intensiven seelischen Schmerz (vergleichbar mit Trauer) erleben, und das Kind verliert den Nutzen einer Betreuungsperson, die biologisch darauf ausgerichtet ist, für es zu sorgen. Sowohl die Evolution als auch die Neurobiologie legen nahe, dass das Zerbrechen einer gesunden Mutter-Kind-Bindung äußerst nachteilig ist. Der nächste Abschnitt wird zeigen, dass – wenn auch in geringerem Ausmaß – auch Väter erhebliche biologische Veränderungen im Hinblick auf Elternschaft durchlaufen. Folglich stellt auch der Verlust eines Vaters durch Entfremdung eine gravierende Abweichung von den evolutionären Erwartungen des Kindes dar.

## 5.3 Neurobiologische Anpassungen bei Vätern: Das väterliche Gehirn

Über viele Jahre dominierte die Vorstellung eines "mütterlichen Instinkts" die Elternforschung, während Vätern eine zweitrangige, wenn nicht entbehrliche Rolle bei der Kindererziehung zugeschrieben wurde. Neuere Untersuchungen zum Gehirn von Vätern zeigen jedoch, dass auch die Vaterschaft bemerkenswerte biologische und neuronale Veränderungen bei Männern auslöst. Zwar erleben Väter weder Schwangerschaft noch Geburt, doch der Übergang zur Vaterschaft beinhaltet hormonelle Veränderungen, neuronale Plastizität und Verhaltensanpassungen, die in mancher Hinsicht der mütterlichen Erfahrung ähneln. Evolutionär ergibt das Sinn – in einer biparentalen Spezies wie dem Menschen begünstigte die natürliche Selektion Mechanismen, die Väter motivieren, sich um ihren Nachwuchs zu kümmern und so das Überleben des Kindes zu erhöhen. Die moderne Neurowissenschaft bestätigt nun, dass "Väter-Hirne" ein reales Phänomen sind.

Eine der am besten dokumentierten Veränderungen betrifft die Hormonspiegel. Wenn ein Mann Vater wird, insbesondere wenn er intensiv in die Betreuung eingebunden ist, verschiebt sich sein hormonelles Profil in eine Richtung, die die Elternschaft unterstützt. Studien haben herausgefunden, dass während der Schwangerschaft der Partnerin und in den ersten Monaten nach der Geburt das Testosteron-Level bei Männern oft deutlich absinkt, während Hormone, die mit Bindung und Fürsorge in Zusammenhang stehen, ansteigen. Eine Meta-Analyse von Grebe et al. (2019) kam zu dem Schluss, dass das Testosteron von Männern nach der Geburt eines Kindes sinkt (insbesondere wenn sie direkt in die Säuglingspflege involviert sind). Dies passt zu der Vorstellung, dass ein niedrigerer Testosteronspiegel Konkurrenz- und Paarungstriebe zugunsten von Pflegeverhalten reduziert. Gleichzeitig zeigen werdende und frischgebackene Väter einen Anstieg von Östradiol (einer Form des Östrogens), Prolaktin und Oxytocin – Veränderungen, die eher mit Frauen in Verbindung gebracht werden, aber bei Männern mit väterlicher Responsivität korrelieren. Beispielsweise steigt bei Vätern der Oxytocinspiegel, nachdem sie mit ihren Säuglingen interagiert haben (z.B. beim Spielen), ähnlich den Oxytocin-Schüben, die Mütter beim Stillen erleben. Höhere Oxytocinwerte bei Vätern wurden mit stärker synchronisiertem, einfühlsamem Umgang mit ihren Babys in Verbindung gebracht, etwa einem abgestimmten sozialen Blickkontakt und liebevoller Berührung. Auch Prolaktin steigt bei Vätern an - zwar viel weniger als bei stillenden Müttern, aber dennoch - und könnte eine erhöhte Wachsamkeit gegenüber dem Weinen des Säuglings fördern und sogar einige Reaktionen auslösen, die mit dem Stillen zusammenhängen (anekdotisch berichten manche Väter Neugeborener von sympathischem Brustspannen oder einem "Milcheinschussgefühl", wahrscheinlich aufgrund hormoneller Interaktionen). Diese hormonellen Anpassungen bei

Männern demonstrieren ein grundlegendes biologisches Prinzip: Menschliche Väter sind neuroendokrinologisch auf Fürsorge programmiert. Kurz gesagt: Der Körper von Männern reagiert auf die Vaterschaft, indem er biochemisch in einen "Pflegemodus" schaltet (weniger Aggression/sexuelles Interesse durch niedriges Testosteron, dafür mehr Bindung durch Oxytocin und andere Hormone). Bemerkenswert ist, dass das Ausmaß der hormonellen Veränderung individuell und kulturell sehr unterschiedlich sein kann – Faktoren wie die Zeit, die der Vater mit direkter Babypflege verbringt, oder kulturelle Erwartungen können diese Effekte modulieren. Dennoch unterstützt das Gesamtmuster eine evolutionäre Anpassung zur väterlichen Fürsorge.

Vielleicht noch eindrucksvoller sind die strukturellen Gehirnveränderungen, die bei Neu-Vätern beobachtet wurden. Bis vor Kurzem nahm man an, dass größere neuronale Plastizität ausschließlich Müttern vorbehalten sei (aufgrund der Schwangerschaft). Neuere longitudinale MRT-Studien zeigen jedoch, dass auch Erstväter messbare Veränderungen in der Gehirnstruktur von der pränatalen zur postnatalen Phase erfahren. In ihrer Studie von 2023 scannten Martínez-García und Kollegen Männer, bevor ihre Partnerin schwanger wurde, und erneut, nachdem sie Väter geworden waren - zusätzlich zu einer Kontrollgruppe von Männern, die kinderlos blieben. Die Ergebnisse zeigten Abnahmen des Grauen Substanzvolumens im insbesondere Gehirn neuer Väter, in Bereichen der Großhirnrinde, Ruhezustandsnetzwerken und visueller Verarbeitung beteiligt sind. Obwohl diese Veränderungen subtiler waren als bei Müttern, traten sie in zwei internationalen Stichproben (in Spanien und den USA) konsistent auf. Grob gesagt betraf der Volumenverlust bei Vätern Teile des Default Mode-Netzwerks (welches mit Empathie, Theory of Mind und dem Nachdenken über andere zusammenhängt) und des visuellen Kortex (möglicherweise reflektierend, dass sie vermehrt visuelle Babysignale beachten), während subkortikale limbische Strukturen (wie Amygdala und Hippocampus) relativ unverändert blieben. Die Konzentration der Veränderungen auf höhergradige kortikale Netzwerke deutet auf eine Anpassung in der mentalen Herangehensweise der Väter an die Elternschaft hin – beispielsweise darin, die Bedürfnisse des eigenen Säuglings besser wahrzunehmen oder stärker familienbezogene Gedanken zu fokussieren (Funktionen, die mit diesen Gehirnnetzwerken verbunden sind). Bemerkenswert ist, dass dieselben neuronalen Netzwerke (soziale Kognition usw.) bei Vätern beeinflusst werden wie bei Müttern, wenn auch in geringerem Ausmaß. Tatsächlich fand die Studie, dass das Ausmaß der kortikalen Volumenänderungen bei Vätern ungefähr halb so groß war wie das bei Müttern, die vom selben Team untersucht wurden. Das passt zu der Vorstellung, dass Mütter aufgrund der Schwangerschaft die intensivste neuronale Umstrukturierung durchlaufen, Väter jedoch - durch ihre Erfahrungen in der Säuglingsfürsorge und die Miterlebnisse der Schwangerschaft der Partnerin (Eindrücke, Gerüche, sogar Pheromone) - ebenfalls eine abgeschwächte Form der neuronalen Anpassung erfahren.

Abbildung 2: (Daten aus Martínez-García et al. 2023) **Neuroanatomische Veränderungen bei Neu-Vätern.** (A) Durchschnittliche prozentuale Veränderungen in Gehirnvolumenmaßen von vor der Geburt bis nach der Geburt bei Erstvätern in Spanien (rot) und den USA (grün) im Vergleich zu kinderlosen Kontrollmännern (blau). Neu-Väter zeigen moderate Abnahmen des gesamten kortikalen Graumassevolumens und der kortikalen Dicke (negative %-Änderung), während Kontrollpersonen keinen derartigen Rückgang aufweisen. (B) Schematische Karte der funktionellen Netzwerke des Gehirns – visuelles Netzwerk (lila), Default Mode (orange), limbisch (grün) etc. (C) Prozentuale Volumenänderungen nach Netzwerk bei Neu-Vätern vs. Kontrollen. Auffällig ist, dass Default Mode- und visuelles Netzwerk die größten Volumenverringerungen bei Vätern aufweisen (rote/grüne Balken sinken um ~1–2 %) und sich signifikant von den Kontrollen unterscheiden. Diese Muster deuten darauf hin, dass Vaterwerden eine **strukturelle Feinabstimmung** in Regionen bewirkt, die an sozialer Kognition und sensorischer Verarbeitung von Babysignalen beteiligt sind. (Daten aus Martínez-García et al. 2023.)

Funktionell entwickeln auch Väter charakteristische Gehirnantworten auf Säuglinge. Funktionelle MRT-Studien, die Väter mit Nicht-Vätern vergleichen, haben gezeigt, dass Vater-Gehirne – insbesondere auf den eigenen Nachwuchs – stärker auf Säuglingsreize reagieren, und zwar in Regionen, die mit Belohnung und Empathie zu tun haben. Eine Studie fand zum Beispiel, dass beim Betrachten von Babyfotos Väter eine stärkere Aktivierung aufwiesen als Nicht-Väter im kaudalen mittleren Frontalgyrus - einer Region, die an der Verarbeitung emotionaler Gesichtsausdrücke und Theory of Mind beteiligt ist -, während die Konfrontation mit sexuellen visuellen Reizen bei Vätern eine relativ geringere Reaktivität hervorrief als bei Nicht-Vätern. Im Grunde scheint die Vaterschaft die Prioritäten im Gehirn neu abzustimmen: Säuglingsreize werden salienter und belohnender, während paarungsbezogene Reize an Dominanz verlieren. Eine weitere Studie berichtete, dass frischgebackene Väter beim Anhören von Tonaufnahmen des Weinens ihres eigenen Babys eine erhöhte Aktivierung in der Amygdala (einem zentralen emotionalen Verarbeitungszentrum) und im **inferioren Frontalkortex** zeigten - vergleichbar mit den Reaktionen, die man bei Müttern beobachtet. Interessanterweise deutet Forschung an hauptsächlich erziehenden Vätern (z.B. in Familien, in denen die Mutter weniger verfügbar ist und der Vater die Hauptbetreuung übernimmt, oder bei gleichgeschlechtlichen männlichen Paaren mit Säuglingen) darauf hin, dass Vater-Gehirne ein mütterliches Aktivierungsmuster annehmen können. In einer bemerkenswerten PNAS-Studie zeigten Väter, Hauptbetreuung übernahmen, eine erhöhte Emotionsverarbeitungs-Schaltkreisen (wie der Amygdala) ähnlich der von Müttern, gepaart mit einer starken Aktivierung des Sulcus temporalis superior (beteiligt an sozialer Kognition) - sie rekrutierten effektiv sowohl "mütterliche" als auch "väterliche" neuronale Netzwerke für die Elternrolle. Dies demonstriert eine hohe Plastizität: Das Gehirn des menschlichen Vaters kann sich flexibel auf Pflegefunktionen einstellen, wenn dies erforderlich ist. Es unterstreicht auch, dass die Fähigkeit zur einfühlsamen Fürsorge biologisch nicht exklusiv weiblich ist - Männer besitzen die neuronalen Voraussetzungen dafür, die durch Erfahrung und hormonelle Veränderungen verstärkt werden können.

Zusammenfassend gilt: Die Vaterschaft "aktiviert" das männliche Gehirn für die Betreuung. Die Veränderungen bei Vätern mögen quantitativ kleiner sein als bei Müttern, sind aber qualitativ ähnlich ausgerichtet – reduziertes Graumassevolumen in sozialen Regionen (was auf Spezialisierung hindeutet), hormonelle Verschiebungen zugunsten der Bindung (niedrigeres Testosteron, höheres Oxytocin etc.) und eine gesteigerte Ansprechbarkeit auf babybezogene Signale. Diese Evidenz widerlegt die Vorstellung, dass Väter biologisch für Kinder irrelevant seien; im Gegenteil, die Natur hat Männer offenbar dazu bestimmt, an der Kindererziehung teilzunehmen, indem sie ihnen ein flexibles Gehirn und ein anpassungsfähiges hormonelles Milieu mitgab, das sich auf die Elternschaft einstellen kann. Aus evolutionärer Sicht entwickelten sich die väterlichen Anpassungen wahrscheinlich ergänzend zur mütterlichen Fürsorge, um zusätzlichen Schutz und Ressourcen für das Kind sicherzustellen (z. B. ist ein Vater mit angemessen gedämpftem Testosteron weniger geneigt, aggressiv aufzutreten oder sich auf die Suche nach neuen Partnerinnen zu machen, und eher bereit, für sein Kind zu sorgen und es zu beschützen). Das Modell kooperativer Elternschaft wird also durch die Biologie sowohl der Mütter als auch der Väter gestützt.

Was das AUA-EB betrifft, sind die Implikationen der väterlichen Neurobiologie tiefgreifend. Wenn ein Kind von seinem Vater entfremdet wird, bedeutet das, dass dem Kind die Beziehung zu einem Betreuer vorenthalten wird, der in vielerlei Hinsicht biologisch darauf programmiert ist, es zu lieben und in es zu investieren. Der entfremdete Vater seinerseits erlebt etwas, das man als **Vereitelung tief verankerter Triebe** beschreiben könnte – seine auf Elternschaft ausgerichteten hormonellen und neuronalen Systeme bleiben ungenutzt. Dies kann zu Depression, Wut und einem tiefen Verlustgefühl führen. Einige Studien über getrennte oder entfremdete Väter dokumentieren tatsächlich erhöhte Raten affektiver Störungen und sogar

neuronale Marker von Trauer, wenn Vater-Kind-Bande zerbrechen. Darüber hinaus entgeht dem Kind der einzigartige Nutzen, den väterliche Fürsorge mit sich bringt. Engagierte Väter stehen in vielen Bereichen mit besseren Ergebnissen der Kinder in Verbindung – von schulischen Leistungen über soziale Kompetenz bis zur psychischen Gesundheit. Beispielsweise haben Kinder mit involvierten Vätern im Durchschnitt höhere kognitive Fähigkeiten und weniger Verhaltensauffälligkeiten. Entfremdung bedeutet also nicht nur, dass eine Person aus dem Leben des Kindes entfernt wird; es wird ein ganzes Bündel an Fürsorge-Leistungen – emotional, kognitiv und materiell – entzogen, das das Kind aufgrund seiner evolutionären und neuroentwicklungsbedingten Programmierung eigentlich erwarten würde.

### 5.4 Auswirkungen der Bindungsunterbrechung durch das AUA-EB

Nach der Feststellung, dass menschliche Eltern und Kinder biologisch darauf ausgerichtet sind, starke gegenseitige Bindungen zu bilden, wenden wir uns nun explizit dem Fall des AUA-EB zu. Das AUA-EB kann als eine Form der **Bindungsstörung** oder -manipulation betrachtet werden. Ein Elternteil (der entfremdende Part) treibt absichtlich oder unabsichtlich einen Keil zwischen das Kind und den anderen (ausgegrenzten) Elternteil. Aus Sicht des Kindes kann diese Situation zu chronischem Stress und Verwirrung führen. Das natürliche Instinkt des Kindes ist es, **beide** Eltern zu lieben und bei beiden Trost zu suchen; in einer AUA-EB-Konstellation wird das Kind jedoch dafür belohnt, einen Elternteil zurückzuweisen, und bestraft (etwa durch Liebesentzug oder Missbilligung), wenn es diesem Elternteil Loyalität zeigt. Dies erzeugt einen inneren Konflikt, der oft als "Spaltung" des kindlichen Selbst beschrieben wird: Um den bevorzugten Elternteil nicht zu verärgern, unterdrückt das Kind seine Bindungsgefühle gegenüber dem anderen Elternteil.

Biologisch betrachtet ist dies ein unnatürlicher und belastender Stressreaktionssystem von Kindern kann in einer AUA-EB-Umgebung überaktiviert werden – es ist bekannt, dass hochkonflikthafte Familienkonstellationen die Cortisolspiegel von Kindern erhöhen und die Kampf-oder-Flucht-Reaktion des Kindes sensibilisieren können. Langfristig kann solcher Stress die neuronale Entwicklung in Gehirnregionen wie dem Präfrontalkortex und dem Hippocampus beeinträchtigen (die empfindlich auf Glukokortikoide reagieren). Dies könnte erklären, warum chronisch entfremdete Kinder möglicherweise unter Angstzuständen, Depressionen oder kognitiven Schwierigkeiten leiden. Darüber hinaus kann das Kind, indem es die falschen negativen Überzeugungen über den ausgegrenzten Elternteil (oft einen zuvor liebevollen und zugewandten Elternteil) internalisiert, verzerrte Gedankenmuster und ein unsicheres inneres Arbeitsmodell von Bindung entwickeln. Gemäß der Bindungstheorie kann ein Kind, dem eingeredet wird, ein Elternteil habe es verlassen oder es verraten (selbst wenn dieser Elternteil es in Wirklichkeit weiterhin liebt), tiefsitzende Gefühle von Unwürdigkeit oder Misstrauen in Beziehungen entwickeln. Diese können bis ins Erwachsenenalter fortbestehen und die Fähigkeit der Person beeinträchtigen, gesunde Liebesbeziehungen oder Freundschaften aufzubauen - im Wesentlichen ein Echo der gestörten Kindheitsbindung. Tatsächlich deutet eine intergenerationelle Studie darauf hin, dass Personen, die in ihrer Kindheit Bindungsabbrüche erlebten, auch im Erwachsenenalter häufig mit Bindungen Schwierigkeiten haben und so einen Kreislauf der Dysfunktion fortsetzen.

Aus evolutionärer Perspektive ist das AUA-EB für das Kind **maladaptiv**. Sie verringert bewusst die *elterliche Investition*, die das Kind erhält, auf ein Niveau, das unter dem des optimalen Umfelds (zwei unterstützende Eltern) liegt. In der Evolutionsbiologie bezeichnet das Konzept der "elterlichen Investition" die Ressourcen (Zeit, Energie, Schutz, Wissen), die ein Elternteil in den Erfolg seines Nachwuchses steckt. Menschen mit ihrer Neigung zur kooperativen Aufzucht haben sich so entwickelt, dass sie am besten gedeihen, wenn sie Investitionen von mehreren

Betreuern erhalten. Die Investition eines Elternteils zu entziehen, dürfte folglich die Entwicklungschancen des Kindes schmälern. Empirische Daten stützen dies: Kinder, die ohne einen ihrer leiblichen Elternteile aufwachsen (in Fällen von Abwesenheit, Verlust oder Entfremdung), zeigen – unter Kontrolle sozioökonomischer Faktoren – häufiger negative Entwicklungsfolgen. Zu diesen zählen schlechtere schulische Leistungen, eine höhere Wahrscheinlichkeit für psychische Probleme und Schwierigkeiten in sozialen Beziehungen – vieles davon lässt sich auf das Fehlen der Führung und emotionalen Unterstützung eines Elternteils zurückführen. Im spezifischen Kontext von Entfremdung (im Gegensatz zu einer einvernehmlichen Alleinerziehenden-Situation) können die Folgen sogar noch schädlicher sein, weil der psychologische Prozess beim Kind eine Verleugnung und Abwertung eines Teils seiner selbst beinhaltet (da ein Kind sich selbst teils als seine Mutter, teils als sein Vater begreift). Entfremdung bedeutet häufig, dass das Kind irrigerweise glaubt, der ausgegrenzte Elternteil sei gefährlich oder schlecht – was chronische Ängste und eine fragmentierte Identität nach sich ziehen kann.

Ebenso wichtig ist es, die Auswirkungen auf den entfremdeten Elternteil und das Familiensystem insgesamt zu betrachten. Wie beschrieben erlebt eine Mutter oder ein Vater, der von seinem Kind entfremdet wird, eine Vereitelung tief verwurzelter elterlicher Antriebe. Dies kann zu Depression, komplizierter Trauer und sogar zu hirnbezogenen Veränderungen führen, die einem Verlust ähneln. Neuroimaging-Studien von trauernden Eltern (z. B. solchen, die ein Kind durch Tod verloren haben) zeigen anhaltende Aktivierungen von Trauernetzwerken im Gehirn und mitunter sogar gesundheitliche Konsequenzen durch Stress. Ein entfremdeter Elternteil durchlebt einen "sozialen Tod" der Beziehung, oft ohne Abschluss, was zu einer nie endenden Belastung werden kann. Bedenkt man, dass das Elternverhalten durch neuronale Belohnungsmechanismen untermauert wird (z.B. aktiviert es das Dopamin-reiche Belohnungssystem, das eigene Kind glücklich zu sehen), dann kann es einem bereiten Elternteil eine der Hauptquellen von Lebenszufriedenheit nehmen, wenn der Kontakt zum Kind entzogen wird. Eine aktuelle Umfrage-Studie von Guerra et al. (2023) ergab, dass Eltern, die starke Entfremdung erlebt hatten, eine deutlich geringere Lebenszufriedenheit berichteten als Eltern in intakten Familien. Auch wenn weitere Forschung nötig ist, um die neurobiologischen Auswirkungen auf entfremdete Eltern im Detail zu verstehen, liegt es nahe, dass chronischer Stress und Depression des Elternteils wiederum auf das Kind zurückwirken könnten (etwa wenn noch begrenzter Kontakt besteht und der Elternteil aufgrund seines eigenen Traumas weniger emotional verfügbar ist).

Gesellschaftlich betrachtet ignoriert die Leugnung des AUA-EB diese gut dokumentierten biologischen Imperative. Das Abstreiten von PA/AUA-EB in manchen Professionen (rechtlich oder psychologisch) mag aus der Sorge vor Missbrauch des Begriffs herrühren, aber aus wissenschaftlicher Sicht stimmen die Verhaltensweisen und Folgen, die mit dem AUA-EB einhergehen, mit bekannten Mustern von Bindungsstörungen und konfliktinduziertem Trauma überein. Indem man AUA-EB als reales Phänomen anerkennt, können Interventionen gestaltet werden, die das Recht des Kindes auf **beide** Eltern schützen. Beispielsweise kann eine Therapie, die darauf abzielt, dem Kind die sichere Bindung zum entfremdeten Elternteil wiederzugeben, nicht nur als Konfliktlösung verstanden werden, sondern als Behandlung, die eine Form von Entwicklungsdeprivation angeht. Wiedervereinigungsinterventionen zielen oft darauf ab, die verzerrte Wahrnehmung des Kindes zu korrigieren und Vertrauen in den entfremdeten Elternteil wiederherzustellen – solche Bemühungen werden dadurch unterstützt, dass man weiß, dass die langfristige Resilienz des Kindes davon abhängen könnte, diese verlorene Bindung zurückzugewinnen.

Zusammenfassend kann das Phänomen des AUA-EB als Verletzung der evolutionsbiologischen und neurobiologischen Bedürfnisse von Kindern (und deren Eltern) betrachtet werden. Kinder

haben sich so entwickelt, dass sie auf zwei Eltern angewiesen sind und von beiden profitieren; ihre Gehirne sind darauf *verdrahtet*, sowohl mit Mutter als auch Vater Bindungen einzugehen, um sich sicher zu fühlen. Mütter und Väter wiederum sind biologisch darauf vorbereitet, sich voll und ganz um ihren Nachwuchs zu kümmern. Das AUA-EB unterminiert dieses System und fügt dem sozialen Gehirn des Kindes gewissermaßen eine Verletzung zu. Die Tragweite des AUA-EB wird in diesem Licht deutlicher: Es handelt sich nicht um einen kleinen Familienstreit, sondern um einen ernsthaften Angriff auf das grundlegende Bedürfnis eines Kindes nach Liebe und Sicherheit.

## 6. Diskussion

Unsere Auswertung verdeutlicht, dass menschliche Elternschaft und Kindesentwicklung von mächtigen neurobiologischen und evolutionären Kräften getragen werden. Die Existenz des AUA-EB – und ihre schädlichen Effekte – steht in Einklang mit diesen Kräften. In gewisser Hinsicht ist das AUA-EB das "Verleugnen des Unmöglichen": Man kann nicht logisch bestreiten, dass es schädlich ist, die Bindung eines Kindes an einen hingebungsvollen Elternteil zu zerstören, wenn so viele wissenschaftliche Befunde zeigen, dass Kinder diese Bindungen zum Gedeihen benötigen. Die interdisziplinären Belege (aus Gehirnscans, Hormonmessungen, evolutionsbiologischen Vergleichen etc.) laufen auf eine einfache Wahrheit hinaus: Die Eltern-Kind-Beziehung ist biologisch heilig. Einen Elternteil zu entfremden, ist im Grunde ein Angriff auf das soziale Gehirn des Kindes, das stabile elterliche Liebe erwartet und benötigt.

Ein wichtiger Aspekt, der dabei hervortritt, ist das Konzept biologischer Redundanz und Kompensation in der Elternschaft. Die Evolution gab menschlichen Kindern mehrere Betreuer teilweise als Puffer - wenn ein Elternteil wegfiel (durch Tod oder andere Umstände in urzeitlichen Zeiten), konnten andere einspringen. Im Fall des AUA-EB greift dieser Puffer jedoch nicht wirklich, weil das Kind nicht einfach einen Elternteil verliert; ihm wird beigebracht, einen Elternteil, der tatsächlich lebt und für es da sein will, abzulehnen. Dies unterscheidet sich von natürlichen Situationen des Elternverlusts. Der psychologische Schaden bei dem AUA-EB entsteht nicht nur durch Abwesenheit, sondern durch die Indoktrination – das Kind wird dazu gebracht zu glauben, der abgelehnte Elternteil wolle nicht präsent sein oder sei unwürdig. Das kann in mancher Hinsicht schädlicher sein als der Tod eines Elternteils, weil es die Implikation persönlicher Zurückweisung trägt. Zukünftige Forschungen mit Neuroimaging könnten möglicherweise Kinder untersuchen, die entfremdet wurden, um herauszufinden, ob ihr Stressregulationssystem oder bindungsrelevante Hirnareale (wie die Amygdala oder der anteriore cinguläre Cortex) Auffälligkeiten zeigen, die denen in anderen Formen von frühem Trauma ähneln. Wir sagen voraus, dass Kinder, die längerer Entfremdung ausgesetzt sind, neuronale Muster ähnlich einer PTBS oder Angsterkrankung aufweisen könnten, angesichts des chronischen Beziehungsstresses.

Ein weiterer Blickwinkel ist der langfristige evolutionäre Ausgang: Was passiert, wenn eine Generation von Kindern weit verbreitet das AUA-EB erlebt? Auch wenn dies spekulativ ist, könnte man überlegen, ob dies einen Selektions-Effekt hätte. Individuen, die keine ausgewogene Elternschaft erfahren, könnten Schwierigkeiten haben, ihren eigenen Kindern eine ausgewogene Elternschaft zu bieten (da unsichere Bindungsmuster sich tendenziell über Generationen fortpflanzen). Dies unterstreicht, wie wichtig es ist, den Kreislauf zu durchbrechen. Indem man dem AUA-EB juristisch und therapeutisch entgegentritt, können wir möglicherweise die intergenerationale Weitergabe von Bindungsstörungen verhindern. Über evolutionäre Zeiträume hinweg hat kooperative Elternschaft zum Erfolg unserer Spezies beigetragen; in der modernen Zeit kann man das Sicherstellen, dass Kinder Zugang zu beiden liebevollen Elternteilen haben, als eine Maßnahme ansehen, diesen adaptiven Vorteil zu bewahren.

Es lohnt sich auch, Einschränkungen zu diskutieren. Nicht jeder Fall, in dem ein Kind einen Elternteil zurückweist, ist auf "elterliche Entfremdung" (das AUA-EB) im eigentlichen Sinne zurückzuführen – manchmal distanzieren sich Kinder auf natürliche Weise von missbrauchenden oder extrem dysfunktionalen Eltern. Unsere Diskussion setzt voraus, dass der ausgegrenzte Elternteil in einer AUA-EB-Situation normalerweise ein liebevoller Elternteil ist und dass die Ablehnung unbegründet oder induziert ist. In Fällen echten Missbrauchs ist die Ablehnung eines Elternteils durch das Kind eine adaptive Reaktion und keine Fehlanpassung. Die Neurobiologie würde dann eher diese Trennung unterstützen (z.B. kann ein wirklich missbrauchender Elternteil eine Quelle von toxischem Stress sein, und das Wohlergehen des Kindes könnte sich ohne Kontakt verbessern). Es ist entscheidend, dass Fachleute echte AUA-EB von gerechtfertigter Entfremdung unterscheiden. Die Daten, die wir besprochen haben (z. B. die vorteilhaften Hormone und Hirnaktivierungen, die bei einfühlsamen Vätern festgestellt wurden), setzen natürlich ein normales Elternverhalten voraus. Ein Vater mit hohem Oxytocinspiegel, der sein Kind liebevoll umsorgt, ist von Vorteil; ein Vater, der stattdessen drogenabhängig und gewalttätig ist, natürlich nicht. Daher müssen die wissenschaftlichen Erkenntnisse stets fallbezogen angewandt werden, damit wir den Kontakt zu gesunden Eltern fördern und Kinder vor schädlichen Eltern schützen.

Unser Fokus lag größtenteils auf der Neurobiologie – die universelle Prozesse umfasst – und dem evolutionären Kontext – der weit gefasst ist. Man könnte dies durch eine soziokulturelle Analyse ergänzen: In manchen Kulturen spielen Großfamilien eine größere Rolle oder die Gemeinschaft ist stärker in die Kindererziehung eingebunden (Stichwort "It takes a village"). AUA-EB kann auch in diesen Kontexten auftreten (etwa wenn eine Seite der Großfamilie das Kind von der anderen Seite entfremdet). Die Grundprinzipien bleiben jedoch dieselben – das Bedürfnis des Kindes nach Liebe und der Instinkt von Erwachsenen zur Fürsorge sind **universell menschlich**. Soziokulturelle Faktoren können die Ausprägung modulieren (z. B. könnten gesellschaftliche Einstellungen, die Väter abwerten, in manchen Kontexten zu häufigerer Vater-Entfremdung führen). Der Umgang mit AUA-EB erfordert daher möglicherweise auch kulturelle Aufklärung: Die Betonung, dass sowohl Mütter als auch Väter für die Kindesentwicklung essenziell sind, ist nicht nur ein politischer Slogan, sondern eine wissenschaftliche Tatsache.

Nicht zuletzt hebt unser Review hervor, dass eine interdisziplinäre Zusammenarbeit nötig ist, um das AUA-EB anzugehen. Juristen, Psychologen und Neurowissenschaftler sollten miteinander kommunizieren. Beispielsweise könnten Richter, die über die neurobiologische Schädigung durch die Zerstörung einer Eltern-Kind-Bindung informiert sind, Entfremdungsvorwürfe ernster nehmen und rascher handeln, um den Kontakt des Kindes zum entfremdeten Elternteil zu schützen (sofern dies sicher ist). Therapeuten können Wissen über Oxytocin und Bindung nutzen, um möglicherweise Bindungserfahrungen in die Wiedervereinigungstherapie einzubauen (etwa indem sie dazu ermutigen, sichere körperliche Zuwendung zuzulassen oder schöne gemeinsame Erinnerungen hervorzuholen, um auf natürliche Weise Bindungshormone zu aktivieren). Medizinische Fachkräfte könnten die psychische Gesundheit entfremdeter Eltern im Blick behalten, da diese aufgrund des Kontaktabbruchs einem erhöhten Risiko für Depressionen oder andere stressbedingte Erkrankungen ausgesetzt sein könnten.

Abschließend lässt sich sagen, dass das AUA-EB bzw. elterliche Entfremdung kein "Mysterium" oder ein unergründliches Konzept ist – es ist ein Phänomen, das verständlich wird, wenn man die Grundlagen menschlicher Bindung betrachtet. Kinder brauchen ihre Eltern – das ist das Ergebnis von Millionen Jahren Evolution. Und Eltern brauchen ihre Kinder – wie messbare Veränderungen in ihren Gehirnen und Hormonen belegen. Das AUA-EB/PA zu leugnen, heißt, diese Realität zu leugnen. Die gesellschaftliche Relevanz von PA/AUA-EB ist enorm: Indem sie die Basiseinheit menschlicher Kooperation (die familiäre Bindung) untergräbt, bedroht das AUA-EB die soziale und emotionale Entwicklung künftiger Generationen. Sie anzuerkennen, zu

verhindern und – falls sie doch eintritt – zu behandeln, ist daher sowohl ein Thema der öffentlichen Gesundheit und des gesellschaftlichen Wohlergehens als auch eine Frage der Familiengerechtigkeit.

# 7. Schlussfolgerung

Die beispiellose Verletzlichkeit menschlicher Kinder bei der Geburt schuf die Voraussetzungen dafür, dass unsere Spezies für ihr Überleben auf reichhaltige, lang andauernde elterliche Fürsorge angewiesen ist. Über evolutionäre Zeit hinweg wurden Mütter **und** Väter zu integralen Bestandteilen dieser Entwicklungsgleichung – Mütter durch die unmittelbare biologische Intimität von Schwangerschaft und Stillen, Väter durch Versorgung, Schutz und zusätzliche Betreuung, ermöglicht durch eine flexible Neurobiologie. Die moderne Neurowissenschaft hat uns gezeigt, dass die Elternschaft bei beiden Geschlechtern tiefgreifende Veränderungen mit sich bringt: Das Gehirn wird buchstäblich umstrukturiert, um die neue Eltern-Kind-Bindung zu unterstützen, und die Hormone stellen sich darauf ein, Fürsorge in den Vordergrund zu rücken. Diese Veränderungen unterstreichen, wie grundlegend die Bindung zwischen Eltern und Kind ist.

Die **elterliche Entfremdung**/AUA-EB, bei der diese Bindung bewusst beschädigt wird, kann daher als zutiefst wider die menschliche Natur verstanden werden. Sie beraubt das Kind eines seiner grundlegendsten *psychologischen Nährstoffe* – der Liebe eines Elternteils – und beraubt den Elternteil einer der bedeutungsvollsten Rollen, die ein Mensch erfüllen kann. Die in diesem Beitrag zusammengefassten wissenschaftlichen Befunde bestätigen die Schwere der Auswirkungen des AUA-EB. Anstatt ein umstrittenes quasi-rechtliches Konstrukt zu sein, erweist sich das AUA-EB als vorhersehbares Zusammentreffen von Evolutionsbiologie (die vorgibt, dass Kinder mit **beiden** investierten Eltern am besten gedeihen) und Neurowissenschaft (die zeigt, dass Eltern und Kinder biologisch auf Bindung vorbereitet sind). Angesichts dieser Evidenz wird deutlich, dass das **Kindeswohl** – ein leitendes Prinzip im Familienrecht – nahezu immer dadurch gefördert wird, die **gesunden Beziehungen zu beiden Eltern** zu erhalten. Abgesehen von Fällen echten Missbrauchs hängt das Wohlergehen eines Kindes davon ab, dass ihm nicht ein liebevoller Elternteil aus dem Leben gerissen wird.

Letztlich hoffen wir, dass durch die Verankerung der Diskussion über elterliche Entfremdung in der harten Wissenschaft Fachleute und Öffentlichkeit besser verstehen, warum es so wichtig ist, sie zu verhindern und zu beheben. Interventionen, die die Wiedervereinigung fördern und sichere Bindungen wiederherstellen, können als Heilung einer Wunde betrachtet werden, die nicht nur emotional, sondern biologisch ist. Das Gehirn kann sich mit positiven Erfahrungen neu verdrahten – Kinder können ihre gesunde Entwicklung wieder aufnehmen, sobald eine verlorene Bindung wiederhergestellt ist, und entfremdete Eltern können wieder zu seelischem Wohlbefinden finden, wenn sie mit ihren Kindern vereint sind. Es ist unsere gesellschaftliche Verantwortung, dieses Wissen zu nutzen, um Politik, Rechtsentscheide und therapeutische Praktiken zu informieren, die die Eltern-Kind-Bindung schützen. Indem wir dies tun, würdigen wir eine der tiefgreifendsten Errungenschaften unserer Evolution: die Fähigkeit von Eltern und Kind, einander bedingungslos zu lieben, und die neuronale Architektur, die eine solche Liebe möglich macht.

| No. 1 (December 2024)<br>Jorge Guerra González | Full Report: Intentional but Unjustified<br>Severance of Parental Bonds: Lessons from a<br>Quantitative and Qualitative Study                                                                       |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. 2 (December2025)<br>Jorge Guerra González  | Zusammenfassung der Studie: Ursachen und<br>langfristige Folgen von Trennungs- und<br>Entfremdungserfahrungen in der Kindheit.<br>Eine quantitative/qualitative Studie_Dr.<br>Jorge Guerra González |
| No. 3 (June 2025)<br>Jorge Guerra González     | Neurobiological and evolutionary foundations of harm to parents and children through the intentional and unjustified severing of parent-child bond                                                  |
| No. 4 (June 2025)<br>Jorge Guerra González     | Zusammenfassung: Neurobiologische und evolutionäre Grundlagen der Schädigung von Eltern und Kindern durch das absichtliche und ungerechtfertigte Abschneiden von Eltern-Kind-Bindungen (AUA-EB)     |